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The extent to which the well-known pointwise algebraic canonical forms used 
for the energy-momentum tensor, the Weyl tensor, etc., can be regarded as 
smooth relations over some open subset of (possibly the whole of) space-time 
is investigated. 

1. I N T R O D U C T I O N  

The a lgebra ic  s t ructure  o f  symmet r ic  and  skew-symmet r ic  s e c o n d - o r d e r  
tensors  and  fou r th -o rde r  tensors  with Weyl  symmet ry  at a po in t  in space- t ime  
is well k n o w n  [see, e.g., Pet rov (1969), Pi rani  (1957), Bet (1962), Penrose  
(1960), Sachs (1961), P lebanski  (1964), Hal l  (1976), and  Synge (1956); for  
reviews see Hal l  (1984) and  K r a m e r  et aL, (1980)]. However ,  the canon ica l  
forms o b t a i n e d  at p are usua l ly  a s sumed  to ho ld  smoo th ly  in some ne ighbor -  
h o o d  o f  p or  even over  the whole  space- t ime  mani fo ld .  These  a s sumpt ions  
need  jus t i f ica t ion  and m a y  be false wi thout  fur ther  condi t ions .  The  p u r p o s e  
o f  this  p a p e r  is to inves t iga te  these p r o b l e m s  more  r igorously .  

Throughou t ,  M will deno te  a (connec ted ,  smooth )  space- t ime  m a n i f o l d  
and  g a smooth  Lorentz  metr ic  on M. I f  p c M, TpM denotes  the t angen t  
space  to M at p. An  m-dimensional distribution on M is a m a p  l-I which  
associa tes  with each p c M an m - d i m e n s i o n a l  subspace  o f  TpM and  such 
a m a p  is ca l led  smooth if  for each p c M there  is an  open  n e i g h b o r h o o d  U 
of  p in M and  m smooth  vector  fields on U whose  values  at each q e  U 
span  f~(q). Using  the metr ic  g and  given an m - d i m e n s i o n a l  d i s t r ibu t ion  
on M, one can define, in an obvious  way, the orthogonal complement of  f~, 
which is then a ( 4 -m) -d imens iona l  d i s t r ibu t ion  on M. If  A is a s e c o n d - o r d e r  
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(real) mixed tensor at p, the range of A is the subspace of TrM given in 
local coordinates by {A~vb: va~ TpM} and the dimension of this subspace 
is the rank of A at p. The kernel of A at p is the subspace {va: A ; v  b =0} 
of TpM and its dimension is 4 - ( r a n k  of A at p). In dealing with the 
algebraic structure of  mixed second-order tensors at p e M (that is, the 
general solution of the eigenvector-eigenvalue problem A ; v  b = hv ~ for the 
real or complex vector v and h ~ C), use will be made of  the Segre notation 
for the corresponding Jordan form (modified in a well-known way to allow 
for conjugate pairs of  complex eigenvalues). An eigenvalue of such a tensor, 
whether corresponding to a simple or a nonsimple elementary divisor, is 
called nondegenerate (respectively of  degeneracy r, r > 1) if the correspond- 
ing eigenspace is 1-dimensional (respectively, r-dimensional). The algebraic 

type of such a tensor will be regarded as completely specified if its Segre 
symbol is given together with any eigenvalue degeneracies. 

The standard sets R"C, M,R,  etc., will always be assumed to have 
their usual real manifold structures. 

2. PRELIMINARY RESULTS 

This section discusses the smoothness of  the eigenvalues of  smooth, 
second-order mixed tensors on M and the smoothness of certain distribu- 
tions associated with these tensors. Many of these results probably exist in 
the literature, but are not always easily found, at least in the form required 
here. Most of  the proofs are straightforward and so the discussion will be 
brief. Although the approach has the space-time M in mind, the results are 
mostly applicable to higher-dimensional manifolds. 

(i) Let U denote the open submanifold of  nonsingular members of 
MnR and let A ~ U and y c R n. The unique solution x c R n of the system of 
equations A x  = y  depends smoothly on A and y in the sense that the map 
(A, y) --> x is a smooth map U x R n -~ R n. As a consequence, if A is a smooth, 
mixed, second-order tensor of  rank 4 and Y a smooth vector field each 
defined on some open subset V ~ M, there is a unique smooth vector field 
X on V which satisfies A~,X b = ya  in any chart domain in V. 

The second part follows from the first by noting that A may be regarded 
as a smooth map W-> U c _ M n ~  and Y as a smooth map W->R n for any 
chart domain W in V. 

Now let Pn be the set of  polynomials of  degree -<n and with real 
coefficients. Then P, can be identified with the manifold R ~§ by the map 

P=- a ,x  ~ +" �9 .+ a lx  + ao-~ (ao, al . . . .  , an) 

Then let A ~ C be a simple root of P ~ Pn in the sense that P(A) = 0, P'(A) ~ 0. 
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Define smooth maps f and g by 

f :  C x N " + ~ C  f (z ,  a o , . . . , a , ) = a n z " + . . . + a l z + a o  

g: ~2 X ~n+l -'> ~2 g(x,y, ao,...,a,)=(a,b) 

where a + ib = f ( x +  iy, ao . . . . .  an). Now the Cauchy-Riemann equations 
show that the Jacobian O(a, b)/O(x, y) = IP'(A)I2r 0 when evaluated at the 
point in R2xR n+~ determined by A and P and so the implicit function 
theorem reveals the existence of a smooth map h from an open neighborhood 
U of P to C such that h ( P ) = A  and if Q~ U, h(Q) is a root of Q. The 
following result is then obtained. 

(ii) The simple roots of  a polynomial depend smoothly on the poly- 
nomial coefficients. 

The next result is a special case of  a theorem in Dieudonn6 (1969, 
p. 248). 

(iii) Let V_cC be open and let f :  V x M n ~ - + C  be the smooth map 
given by f ( z ,  A) = g(z) ,  where X is the characteristic polynomial  of  A. It 
then follows that if V ' c  V is open and has compact  closure ~'_c V and if 
Aoe M,R is such that no zero o f f ( z ,  Ao) lies on the boundary of V', then 
there exists an open neighborhood W of Ao in M,R such that (a) for any 
A ~ IV, f ( z ,  A) has no zeros on the boundary of V', and (b) for any A c W, 
the sum of the orders of  the zeros o f f ( z ,  A) in V' is independent of  A. 

(iv) Let ar be a subset of  MnR consisting of matrices all of  which have 
the same algebraic type in the sense defined in Section 1. Then for any 
A e ~ / t h e r e  is an open neighborhood U of A in MnR and smooth maps 
hi . . . . .  hk: U ~  C such that for B ~_ sg c~ fJ, h~ (B) , . . . ,  hk(B) are the distinct 
eigenvalues of  B. 

To see this, let A1,. �9 �9 Ak be the distinct eigenvalues of  A and choose 
disjoint neighborhoods U ~ , . . . ,  Uk of A~ , . . . ,  Ak in C. I f  Ai has multiplicity 
m as a root of the characteristic polynomial x ( A )  of A, one can arrange, 
by reducing the size of  Ui, if necessary, that Ae is the only root of  the 
(m - 1)th derivative X(m-~)(A) contained in Oi. By (iii) there exists an open 
neighborhood W of A in MnR such that if B c W, all eigenvalues of  B are 
contained in O~=~ Ui and such that only one root ofx(m-~)(B) is contained 
in U~. This is a simple root of  X ( ' - ~ ( B )  and so depends smoothly on B by 
(ii). The smooth function thus obtained is hi. 

By regarding a smooth, mixed second-order tensor A on M as a smooth 
map V ~  M,N for any coordinate domain V of  M and given that A has 
the same algebraic type at each p ~  M, then (iv) above shows that any 
eigenvalue of A may be regarded as locally smooth on M. I f  also A has some 
real eigenvalues, the  distinct real eigenvalues of  A may be ordered by size 
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in the usual way in N and then each gives rise to a global real-valued 
function on M which is smooth by the local smoothness results of the 
previous sentence. One thus has the following result. 

(v) Let A be a smooth, mixed second-order tensor on M with the same 
algebraic type at each p ~ M. Then all eigenvalues of A are locally smooth 
in the sense that for each p c M there is an open neighborhood U of p 
such that the eigenvalues of A may be regarded as smooth functions on U. 
Any real eigenvalue of A may be regarded as a global smooth function on M. 

Now the smoothness of the eigendirections of the tensor A can be 
considered. 

(vi) Let A be a smooth, mixed second-order tensor on M which has 
the same rank r at each p ~ M. Then the range of A is an r-dimensional, 
smooth distribution on M. 

This follows easily, since if p ~ M and U a coordinate neighborhood 
of p, let X1, �9 �9 �9 X4 be the standard coordinate vector fields on U. Then r 

a b a b of the smooth vector fields with components A b X  1 , . . . ,  AbX, ,  are indepen- 
dent at p and hence in some open neighborhood of p and span the range 
of A there. 

(vii) Let f~ be a smooth distribution on M of dimension 1, 2, or 3. 
Then the orthogonal complement of f~ is a smooth distribution on M. 

To establish this, note that iff~ is 3-dimensional and U is any connected 
chart domain of M containing smooth vector fields X, Y, and Z spanning 
ft in U, then ~7~bcaXbyCz d (where r~ is the alternating symbol in U) 3 is a 
smooth vector field on U spanning the orthogonal complement of YL If  Ft 
is 2-dimensional, then about any p E M there is a connected coordinate 
neighborhood U of p and smooth vector fields X and Y on U spanning 
f~. Thus, the bivector on U with components F ab = 2 X  [~ ybl is smooth on 
U and hence so is the dual /~ab of F ~ Now, /~7, has rank 2 at each point 
of U and so, by (vi), its range is a 2-dimensional smooth distribution on 
U. Since p ~ M was arbitrary, this construction yields the orthogonal comple- 
ment of ~ and shows that it is smooth. If  Ft is 1-dimensional, then about 
any p c M there is a connected coordinate domain U and vector fields K, 
R, S on U such that K spans ~ in U and K, R, and S are independent at 
every p ~ U. Then the bivectors KEaR bl and K[as b] a r e  smooth and indepen- 
dent at each p c U and hence so are their duals. The two 2-dimensional 
smooth distributions these duals give rise to, by (vi), then generate in an 
obvious way a 3-dimensional smooth distribution on M which is the 
orthogonal complement of Ft. 

(viii) Let A be any smooth, mixed second-order tensor on M whose 
algebraic type is the same at each p c  M. Then the (real) eigenspaces 

3The usua l  s ign c h a n g e  d u e  to the  two  o r i en t a t i ons  on  U is a s s u m e d  i n c o r p o r a t e d  in to  r/. 
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corresponding to real eigenvalues of A give rise to smooth distributions on 
M and hence may be spanned locally by smooth eigenvector fields of  A. 

To prove this, note that the eigenvalues of  A may be regarded as locally 
smooth functions on M by (v). Let p 6 M and choose a coordinate neighbor- 
hood U of  p such that the eigenvalues of  A are smooth functions on U. 
Let a be a real eigenvalue of A with degeneracy r, 1 -< r -< 3 (and r is constant 
on U because of the assumption regarding the algebraic type of A) and let 
A have components A~, on U. Consider the smooth, mixed, second-order 
tensor with components  B ~  A ~ - a $ ~  on U. This tensor has constant 
rank equal to 4 -  r on U, since at each p ~ U the a eigenspace of A is the 
kernel of  B~. Now consider the smooth, mixed, second-order tensor field 
defined on U by its having components VB~. This tensor has constant 
rank 4 - r  on U and its range gives rise to a (4 - r ) -d imens iona l  smooth 
distribution on U by (vi). The orthogonal complement  of this distribution 
is then an r-dimensional smooth distribution on U by (vii), which coincides 
with the a eigenspace of A at each p c U. The case r = 4 is trivial because 
then A~ = c~6~ on U. 

(ix) I f  l'l is a smooth null distribution of dimension 2 or 3 on M [that 
is, ~ ( p )  is a null 2-space (or a null 3-space) at each p c M] ,  then one of 
its local smooth spanning vector fields may be chosen null [that is, as 
spanning the unique null direction in ~ ( p )  at each p c M].  I f l )  is a smooth 
2-dimensional timelike distribution on M, then it may be locally spanned 
by two smooth null vector fields. 

To see this, note that, for example, if fi  is null and 2-dimensional and 
has local spanning fields X and Y in some coordinate domain U of  M, 
then if neither X nor Y is null in U, the required smooth vector is the 
vector field L on U uniquely determined by the system of equations 
X a L  a = Y a L  a = Z ~ L  a = O, V a L  ~ = 1, where Z is any smooth vector field lying 
in the smooth distribution orthogonal to fl  which is nowhere null in U, and 
V is a smooth, timelike vector field on U. The domain U can always be 
chosen such that V and Z are defined in U and the result follows from (i) 
above. The proof  when ~ is 3-dimensional and null or 2-dimensional and 
timelike is similar. 

3. APPLICATIONS 

3.1. Symmetric Second-Order Tensors 

At any p ~ M a second-order symmetric tensor with components  Tob 

in some coordinate domain of  p poses the eigenvector-eigenvalue problem 
T ~ k  b = a k  a and it is known (Plebanski, 1964; Hall, 1976, 1984) that either 
T has a conjugate pair of  complex eigenvalues together with two real ones 
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or else all the eigenvalues are real. The former case is labeled as Segre type 
{z~ll} [or {z~(ll)} if the two real eigenvalues are equal] and in this case 
T is diagonalizable over C and all the eigenvalues are simple. In the latter 
case  one may cast T into Jordan canonical form and the Segre types 
consistent with the Lorentz signature of the metric g (since T must satisfy 
gacT~=gbcT~) are the Segre types {1,111}, {211}, and {31} and their 
degeneracies, which are denoted in the usual way by the use of  round 
brackets. The type {1,111} and its degeneracies are diagonalizable over R 
and are the only types possessing a timelike eigendirection, which, while 
not necessarily unique (depending on the degeneracies), corresponds to a 
unique eigenvalue which is signified in the {1,111} notation by the first 
digit and is separated from the others by a comma. 

If, at p c  M, T has respective Segre types {z~ll}, {1,111}, {211}, and 
{31} (or their degeneracies), then it may be written at p in the respective 
canonical forms 

Tab =2pll(anb~+pz(lflb--n~nb)+p3XaXb+p4y,,yb (p2#  0) (1) 

Tab = 2p~ l(anb) q-/92( lolb -t- nanb ) q- p3XaXb q- P4YaYb (2) 

Tab = 2p~ l(anb~ + AIalb + p2XaXb -f- P3YaYb (A r 0) (3) 

Tab = 2pl l(anb) + 20-1(aXb) + plXaXb + P2YaYb (O" r 0) (4) 

where (I, n, x , y )  is a real null tetrad at p whose only nonvanishing inner 
products are Uno = x"xo = yaya = 1 and A, o-, and the p 's  are real numbers. 
An alternative form for (2) is 

Tab = A1XaXb + A2YaYb + A3ZaZb -- A4UaUb (5) 

where (u, x, y, z) is a pseudo-orthonormal tetrad whose only nonvanishing 
inner products are -uOua = xOxo = y~ya = z~zo = 1 and the 3.'s are real num- 
bers. In (1) the eigenvalues are p~ + ip2, p3, [?4 with corresponding eigenvec- 
tors l+in ,  x ,y .  In (2) the eigenvalues are pl-l-pe,P3,D4 [-~1, ~-2, 13, /~4 in 
(5)] with corresponding eigenvectors l •  n, x, y (x, y, z, u). In (3) the eigen- 
values are p~, P2, P3 with corresponding eigenvectors l, x, y. In (4) the 
eigenvalues are Pl, P2 with corresponding eigenvectors l, y. One now has 
the following result. 

(x) If  T is a smooth, second-order symmetric tensor on M whose 
algebraic type is the same at each point of  M (in the sense given in Section 
1), the eigenvalues and eigenvectors of T may be regarded as locally smooth 
[and the real eigenvalues in (1)-(5) as globally smooth] on M. In particular, 
the canonical forms (1)-(5) may be regarded as holding in a coordinate 
domain of any p c M with the p 's  and h ' s  regarded as smooth functions 
on this domain and the tetrad members in each case regarded as smooth 
vector fields in this domain. Further, one may always set h = +1 and cr = 1 
in (3) and (4) over this domain without affecting any of the above results. 
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The proof  can largely be gathered from the results of the previous 
section. For example, if T has Segre type {1,111} everywhere with no 
degeneracies, then one obtains locally smooth eigenvalues and eigenvectors 
from results (v) and (viii), the normalization required to achieve equation 
(5) being obviously smooth. Equation (1) is then readily obtained from 
equation (5). When T has Segre type {211 } everywhere with no degeneracies, 
results (v) and (viii) again establish the local smoothness of  l, x, y, and the 
p's in (3). The existence of the smooth distribution orthogonal to that 
spanned by x and y then shows, using (ix), that n is locally smooth. The 
local smoothness of A then follows and hence the locally smooth adjustments 
required to achieve A = +1. In the {31} case [equation (4)], l, y, and the p's 
are locally smooth by (v) and (viii) and the completeness relation gab = 
21(,nb~+ XaXb +Y~Yb then shows that o-l(~xb) is locally smooth, since g and 
T - p i g  are. The local smoothness of  l and the components o'l(,,xb~ then 
show that x and ~r may be chosen locally smooth, and the locally smooth 
scaling to achieve o- = 1 and the local smoothness of n then follow. In the 
{zffll} case the presence of complex eigenvalues necessitates a slightly 
different approach. However, one can still use (v) to see that P3, P4, and 
pl + ip2 (and hence pl and p2) are locally smooth and (viii) to see that x 
and y are locally smooth. The completeness relation then shows that l(,,nb) 
is locally smooth and hence so is ( l~l~-n,nb) ,  since T is. From this and 
from (vii) and (ix) one can deduce that I and n may be chosen locally 
smooth. For those algebraic types described by Segre types with degeneracies 
the proofs are similar except that one has the extra but straightforward task 
of smoothly "orthonormalizing" within each eigenspace. 

3.2. Bivectors 

It is briefly remarked here that if F is a smooth, second-order, skew- 
symmetric tensor (bivector) on M which is of  the same type (spacelike, 
timelike, null, or nonsimple) at each p c M, then it is of the same algebraic 
type at each p ~ M in the sense described in Section 1 [the respective Segre 
types being {(11) zs { 11 (11)}, {(31)}, or { 11 z~} with no further degeneracies 
permitted]. The blade of F (when F is simple) and the canonical pair of 
blades of F (when F is nonsimple) give rise to smooth distributions on M 
and the usual local canonical forms for F may then be regarded as written 
in terms of locally smooth functions and vector fields in an obvious way 
as follows from the results of  Section 2. 

3.3. The Weyl Tensor 

Results similar to those obtained above for the energy-momentum 
tensor hold also for the (smooth) Weyl tensor when it is decomposed into 
its canonical Petrov forms. To see this, one could proceed in a way similar 
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to that given above by considering the algebraic structure of the Weyl tensor 
components  regarded in the usual way as a smooth, symmetric, 6 • 6 matrix- 
valued function on any chart of  M. However, it is more convenient to 
consider the complex self-dual Weyl tensor regarded in the usual way as a 
smooth, complex, symmetric, 3 • 3 matrix-valued function on any chart of  
M. Unfortunately, the basic results in Section 2 concerned real matrices, 
but it turns out that the key results (ii)-(v) can be modified to deal with 
the complex case and that (v) still holds if A is any smooth, complex matrix 
on M having the same algebraic type at each p ~ M in the sense that the 
(complex) eigenvalues of  A can be chosen locally smooth functions in some 
neighborhood of any p ~ M. Thus, the Weyl eigenvalues (Petrov scalars) 
can be chosen locally smooth in this sense and one proceeds by showing 
how the Weyl eigenbivectors of the complex self-dual Weyl tensor can be 
chosen locally smooth by techniques closely related to those in Section 2. 
For this reason only a summary of the main results is given. 

If  the Petrov type is I at every p ~ M so that there are three distinct 
complex Petrov scalars at each p ~ M, then these scalars and their corre- 
sponding complex eigenbivectors can be chosen locally smooth on M. The 
(real) canonical blades determined by the real and imaginary parts of  these 
eigenbivectors determine three spacelike and three timelike smooth 2- 
dimensional distributions on M whose intersections determine three space- 
like and one timelike 1-dimensional distributions on M. These 1-dimensional 
distributions fix, up to signs, the canonical Petrov tetrad at each p ~ M and 
in this sense the canonical Petrov tetrads can be regarded as four local 
smooth vector fields on M. From these local smooth vector fields one can 
construct local smooth null tetrads in an obvious sense and express the 
complex self-dual Weyl tensor in a locally smooth canonical form of the 
type used by Bel (1962), Sachs (1961), and others, and since the construction 
of the so-called Debever-Penrose directions involves finding simple roots 
of  a fourth-order polynomial  equation, one also has four smooth null 
1-dimensional distributions determined on M spanned at each p c M by 
the Debever-Penrose directions. In this sense one may choose in some 
neighborhood of each point p ~ M four distinct smooth null Debever-  
Penrose vector fields. 

Similar arguments hold for the other Petrov types provided the Petrov 
type is the same at each p c M. Thus, the Petrov scalars (which are all 
identically zero for types I I I  and N) and associated eigenbivectors and 
repeated and nonrepeated Debever-Penrose vectors may all be regarded as 
locally smooth on M. The canonical forms for each of these types as given, 
for example, in Bel (1962) and Sachs (1961), may also be regarded as locally 
smooth in the sense of the previous paragraph. 
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4. GLOBAL C O N S I D E R A T I O N S  

Suppose a smooth, symmetric, second-order tensor on M has the same 
algebraic type at each p ~ M and has all its eigenvalues real. Then result 
(v) shows that the eigenvalues can be regarded as global, smooth functions 
on M. However,  one may not be able to assume the existence of global, 
smooth eigenvector fields. The following result shows that under certain 
conditions global smooth eigenvector fields exist. 

(xi) Let M be a simply connected space-time and T a smooth, sym- 
metric, second-order tensor on M whose algebraic type is the same at each 
p ~ M and whose eigenvalues, whether simple or nonsimple, are all real 
and nondegenerate. Then there exist global smooth vector fields on M which 
span the eigendirections of  T at each p ~ M. In particular, if T is of  Segre 
type {1,111} at each p ~ M, then 4 M admits four global, unit smooth x~ector 
fields, one timelike and three spacelike, which span the eigendirections of 
T at each p ~ M and, as a consequence, M is parallelizable. M is also 
parallelizable if T is of  Segre type {211} at each p ~ M. 

To see this, note that for each (global, smooth) eigenvalue the corre- 
sponding eigenspace gives rise to a smooth 1-dimensional distribution on 
M which is of  the same nature (timelike, spacelike, or null) at each point 
of  M. Now, since M is simply connected, it admits a global, smooth, 
nowhere zero timelike vector field u. Thus, if a certain eigenspace is timelike 
or null, it gives rise to a global, smooth eigenvector field on M by insisting 
on the normalizing condition g(u, k ) =  1 for each of the local, smooth 
eigenvector fields k. I f  the eigenspace is spacelike, one first insists on the 
normalization g(k, k) = 1 for the local, smooth eigenvector fields. I f  with 
this restriction one cannot choose k globally and smoothly on M, one can 
always find a twofold covering space of M by a standard argument and 
this contradicts the simply connectedness of  M. That M is parallelizable 
in the {1,111} case is clear and in the {211} case follows from the existence 
of the vector field u above and the three eigenvector fields. 

It follows that if a space-time M admits a global, smooth, second-order 
symmetric tensor field of  Segre type {1,111} at each p ~ M, then M admits 
an n-fold covering space which is parallelizable (and it is easily seen that 
n --< 2 4 = 16). This result restricts the topology of  a manifold on which the 
energy-momentum tensor has Segre type {1, 111} everywhere. In particular, 
it cannot be both simply connected and nonparallelizable. 

A similar discussion can be given for the Weyl tensor and leads to the 
following result. 

4A similar result is true for the eigendirections arising from the (nondegenerate) real eigenvalues 
in the {z211} case. 



374 Hall and Rendali 

(xii) Let M be a simply connected space-time and suppose that the 
Petrov type is the same at each p ~ M. Then there exist global, null vector 
fields on M which span the Debever-Penrose directions at each p ~ M. In 
particular, if the Weyl tensor is type I at each p ~ M, there exist four global, 
null vector fields on M which span the Debever-Penrose directions at each 
p c M and four mutually orthogonal, global, smooth unit vector fields on 
M, one timelike and three spacelike, which span the Petrov tetrads at each 
p ~ M. As a consequence, M is parallelizable in this case. 

It follows that if M is a space-time whose Petrov type is I at each 
p ~ M, then M admits an n-fold covering space which is parallelizable (and, 
in fact, n -<2x23x3!  =96).  

5. CONCLUDING REMARKS 

The smoothness results concerning eigenvectors given in (viii), (x), and 
elsewhere required the assumption of constancy of algebraic type, whereas 
the global results in (xi) and (xii) also required M to be simply connected. 
These results may fail if these assumptions are dropped, as will be briefly 
demonstrated here with a second-order tensor on a 2-dimensional manifold 
(and which is readily extended to higher-order examples). Let M' = R 2 with 
the usual Euclidean metric and let A be a global, smooth, second-order 
symmetric tensor defined on M'  in the usual global Cartesian coordinates 
by the component form 

---- e_l/r2 ( COS 0 
Aab(X, y) k--sin 0 

where r and 0 are the usual polar functions 

- s in  0 0 ) ( x 2 + y 2  r 0), Aab(O,O)=(~ 00) 
--COS 

(6) 

on •2\{(0,0)}. Then 
A is diagonalizable everywhere having Segre type {1, 1} with eigenvalues 
•  -ur2 and corresponding eigenvectors ( cos (0 /2 ) , - s i n (0 /2 ) )  and 
(sin(0/2), cos(0/2))  if r ~ 0 and type {(11)} with degenerate eigenvalue zero 
at (0, 0). Thus, a change of algebraic type occurs at the origin. It is then 
clear that although local eigenvector fields exist in a neighborhood of any 
point (x, y) ~ (0, 0), the same is not true of  the origin. For, suppose there 
is an open e-ball (e > 0) about (0, 0) in which two independent smooth 
eigenvector fields are defined. Then they may be assumed normalized with 
respect to the Euclidean metric and such that they have components (1, 0 )  
and (0, 1) at P = (6, 0) ~ U (0 < 6 < e). Now consider the circular path P ~ P 
given by t ~ (6 cos t, 6 sin t). The smooth extensions of the eigenvectors at 
P along this curve have components (cos(t/2),-sin(t/2)) and 
(sin(t/2),  cos(t /2))  and are easily seen to have reversed their signs, com- 
pared with the original eigenvectors at P, on arrival back at P. Thus, one 
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obtains a contradict ion.  Alternatively, one could obtain a contradict ion by 
supposing smooth  unit eigenvector  fields exist in U and smoothly  extending 
the resulting eigenvectors at a point  Q ~ (0, 0) with polar  angle 0 to (0, 0) 
along the straight line o f  constant  0 in U. The eigenvectors so obta ined at 
(0, 0) depend  on 0 and hence no cont inuous  extension of  these eigenvector  
fields to (0, 0) is possible. 

N o w  let M " =  R2\{(0, 0)} and take A to be the above tensor  restricted 
to M". The above shows that the algebraic type o f  A is the same at each 
point  o f  the non-s imply connected  manifold  M "  but  the first contradict ion 
argument  given above shows that  global, smooth  eigenvector fields o f  A do 
not exist on M". 
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